## Bundesministerium Bildung, Wissenschaft und Forschung

## Fruchtsaftproduktion\*

| Aufgabennummer: B_483 |           |                |
|-----------------------|-----------|----------------|
| Technologieeinsatz:   | möglich □ | erforderlich ⊠ |

Ein Unternehmen produziert den Fruchtsaft Mangomix.

a) Die Kosten bei der Produktion des Fruchtsafts *Mangomix* können durch eine ertragsgesetzliche Kostenfunktion *K* beschrieben werden:

$$K(x) = a \cdot x^3 + b \cdot x^2 + 105 \cdot x + 1215$$

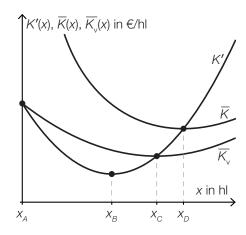
x ... Produktionsmenge in hl

K(x) ... Kosten bei der Produktionsmenge x in €

Von der Kostenfunktion ist bekannt:

I: Die Grenzkosten bei einer Produktionsmenge von 25 hl betragen 30 €/hl.

II: K''(25) = 0


- 1) Erstellen Sie eine Gleichung, die die Bedingung I beschreibt.
- 2) Interpretieren Sie die Bedeutung der Zahl 25 in der Gleichung II im gegebenen Sachzusammenhang.
- 3) Berechnen Sie die Koeffizienten a und b.

<sup>\*</sup> ehemalige Klausuraufgabe

Fruchtsaftproduktion

b) In der nachstehenden Abbildung sind die Graphen der Grenzkostenfunktion K', der Durchschnittskostenfunktion  $\overline{K}$  und der variablen Durchschnittskostenfunktion  $\overline{K}$  für den Fruchtsaft *Mangomix* dargestellt.

Vier Produktionsmengen,  $x_A$  bis  $x_D$ , sind auf der horizontalen Achse markiert.



1) Ordnen Sie den beiden Begriffen jeweils die zutreffende Produktionsmenge aus A bis D zu. [2 zu 4]

| Kostenkehre     |  |
|-----------------|--|
| Betriebsminimum |  |

| А | Produktionsmenge X <sub>A</sub> |
|---|---------------------------------|
| В | Produktionsmenge $X_B$          |
| С | Produktionsmenge $x_{\rm C}$    |
| D | Produktionsmenge X <sub>D</sub> |

wird.

| c)                                                                                                                                                                                                                                               | Der Erlös beim Verkauf des Fruchtsafts <i>Mangomix</i> kann durch eine quadratische Funktion <i>E</i> beschrieben werden:                   |                      |        | unktion <i>E</i> |                                            |                        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|------------------|--------------------------------------------|------------------------|----------|
|                                                                                                                                                                                                                                                  | $E(x) = a \cdot x^2 + b \cdot x \text{ mit } x \ge 0$<br>$x \dots$ Absatzmenge in hl<br>$E(x) \dots$ Erlös bei der Absatzmenge $x$ in $\in$ |                      |        |                  |                                            |                        |          |
| <ul> <li>1) Ergänzen Sie die Textlücken im folgenden Satz durch Ankreuzen des jeweils richtigen Satzteils so, dass eine korrekte Aussage entsteht. [Lückentext]</li> <li>Der Koeffizient a muss</li> <li>1 sein, weil der Graph von E</li> </ul> |                                                                                                                                             |                      |        |                  |                                            |                        |          |
|                                                                                                                                                                                                                                                  | DOLLA                                                                                                                                       |                      |        |                  |                                            |                        | <u> </u> |
|                                                                                                                                                                                                                                                  |                                                                                                                                             | 1                    |        |                  | 2                                          |                        |          |
|                                                                                                                                                                                                                                                  |                                                                                                                                             | positiv              |        |                  | durch den Ursprung geht                    |                        |          |
|                                                                                                                                                                                                                                                  |                                                                                                                                             | negativ              |        |                  | keinen Wendepunkt hat                      |                        |          |
|                                                                                                                                                                                                                                                  |                                                                                                                                             | gleich null          |        |                  | nach unten geöffnet ist                    |                        |          |
|                                                                                                                                                                                                                                                  | 2) Weise                                                                                                                                    | n Sie nach, dass der | maxima | ale Erl          | ös bei der Absatzmenge $x_0 = \frac{1}{2}$ | $-\frac{b}{2 \cdot a}$ | erzielt  |

Fruchtsaftproduktion 4

d) Der Grenzgewinn für den Fruchtsaft *Mangomix* kann durch die Funktion *G'* beschrieben werden:

$$G'(x) = -0.12 \cdot x^2 - 4 \cdot x + 220$$

x ... Absatzmenge in hl

G'(x) ... Grenzgewinn bei der Absatzmenge x in €/hl

1) Ermitteln Sie diejenige Absatzmenge, bei der der maximale Gewinn erzielt wird.

Die Fixkosten betragen 1.215 €.

2) Erstellen Sie eine Gleichung der zugehörigen Gewinnfunktion *G* unter Berücksichtigung der Fixkosten.

Es soll derjenige Bereich für die Absatzmenge ermittelt werden, in dem der Gewinn mindestens 1.000 € beträgt.

3) Ermitteln Sie diesen Bereich.

## Möglicher Lösungsweg

a1) 
$$K'(x) = 3 \cdot a \cdot x^2 + 2 \cdot b \cdot x + 105$$

Gleichung: K'(25) = 30 oder  $1875 \cdot a + 50 \cdot b + 105 = 30$ 

a2) Bei einer Produktionsmenge von 25 hl liegt die Kostenkehre.

oder:

Bei einer Produktionsmenge von 25 hl geht der Kostenverlauf von degressiv zu progressiv

a3) Berechnung mittels Technologieeinsatz:

$$a = 0.04$$
;  $b = -3$ 

b1)

| Kostenkehre     | В |
|-----------------|---|
| Betriebsminimum | С |

| А | Produktionsmenge $X_A$          |
|---|---------------------------------|
| В | Produktionsmenge $X_B$          |
| С | Produktionsmenge $x_{_{\rm C}}$ |
| D | Produktionsmenge $X_D$          |

c1)

| 1)      |          |
|---------|----------|
|         |          |
| negativ | $\times$ |
|         |          |

| 2                       |          |
|-------------------------|----------|
|                         |          |
|                         |          |
| nach unten geöffnet ist | $\times$ |

c2) 
$$E'(x) = 2 \cdot a \cdot x + b$$
  
 $0 = 2 \cdot a \cdot x_0 + b$   
 $x_0 = -\frac{b}{2 \cdot a}$ 

$$X_0 = -\frac{b}{2 \cdot a}$$

oder:

Die Nullstellen der Erlösfunktion sind 0 und  $-\frac{b}{a}$ .

Die Stelle des Maximums liegt in der Mitte bei  $-\frac{b}{2 \cdot a}$ .

Fruchtsaftproduktion 6

**d1)** G'(x) = 0 oder  $-0.12 \cdot x^2 - 4 \cdot x + 220 = 0$ 

Berechnung mittels Technologieeinsatz:

$$x_1 = 29,280...$$
  $(x_2 = -62,613...)$ 

Der maximale Gewinn wird bei einer Absatzmenge von rund 29,28 hl erzielt.

**d2)** 
$$G(x) = \int (-0.12 \cdot x^2 - 4 \cdot x + 220) dx = -0.04 \cdot x^3 - 2 \cdot x^2 + 220 \cdot x + C$$
  
Da  $G(0) = -F$ , gilt:  $G(x) = -0.04 \cdot x^3 - 2 \cdot x^2 + 220 \cdot x - 1215$ 

**d3)** 
$$G(x) = 1000$$
 oder  $-0.04 \cdot x^3 - 2 \cdot x^2 + 220 \cdot x - 1215 = 1000$ 

Berechnung mittels Technologieeinsatz:

$$x_1 = 11,565...$$
  $x_2 = 44,950...$   $(x_3 = -106,516...)$ 

Im Bereich [11,57 hl; 44,95 hl] beträgt der Gewinn mindestens 1.000 €.

## Lösungsschlüssel

- a1) 1 × A: für das richtige Erstellen der Gleichung
- a2) 1 x C: für das richtige Interpretieren im gegebenen Sachzusammenhang
- a3) 1 × B: für das richtige Berechnen der Koeffizienten
- **b1)** 1 × C: für das richtige Zuordnen
- c1) 1 x C: für das richtige Ergänzen der beiden Textlücken
- c2) 1 x D: für das richtige Nachweisen
- d1) 1 x B1: für das richtige Ermitteln der Absatzmenge, bei der maximaler Gewinn erzielt wird
- d2) 1 × A: für das richtige Erstellen der Gleichung der Gewinnfunktion unter Berücksichtigung der Fixkosten
- d3) 1 x B2: für das richtige Ermitteln des Bereichs